Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723619

RESUMEN

The deposition of islet amyloid polypeptide (hIAPP) fibrils is a hallmark of ß-cell death in type II diabetes. In this study, we employ state-of-the-art MAS solid-state spectroscopy to investigate the previously elusive N-terminal region of hIAPP fibrils, uncovering both rigidity and heterogeneity. Comparative analysis between wild-type hIAPP and a disulfide-deficient variant (hIAPPC2S,C7S) unveils shared fibril core structures yet strikingly distinct dynamics in the N-terminus. Specifically, the variant fibrils exhibit extended ß-strand conformations, facilitating surface nucleation. Moreover, our findings illuminate the pivotal roles of specific residues in modulating secondary nucleation rates. These results deepen our understanding of hIAPP fibril assembly and provide critical insights into the molecular mechanisms underpinning type II diabetes, holding promise for future therapeutic strategies.

2.
Nat Commun ; 14(1): 3755, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353525

RESUMEN

Systemic antibody light chain (AL) amyloidosis is characterized by deposition of amyloid fibrils. Prior to fibril formation, soluble oligomeric AL protein has a direct cytotoxic effect on cardiomyocytes. We focus on the patient derived λ-III AL variable domain FOR005 which is mutated at five positions with respect to the closest germline protein. Using solution-state NMR spectroscopy, we follow the individual steps involved in protein misfolding from the native to the amyloid fibril state. Unfavorable mutations in the complementary determining regions introduce a strain in the native protein structure which yields partial unfolding. Driven by electrostatic interactions, the protein converts into a high molecular weight, oligomeric, molten globule. The high local concentration of aggregation prone regions in the oligomer finally catalyzes the conversion into fibrils. The topology is determined by balanced electrostatic interactions in the fibril core implying a 180° rotational switch of the beta-sheets around the conserved disulfide bond.


Asunto(s)
Amiloidosis , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Amiloidosis/metabolismo , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/metabolismo , Amiloide/metabolismo , Mutación
3.
Prog Nucl Magn Reson Spectrosc ; 130-131: 47-61, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36113917

RESUMEN

Proton detection in solid state NMR is continuously developing and allows one to gain new insights in structural biology. Overall, this progress is a result of the synergy between hardware development, new NMR methodology and new isotope labeling strategies, to name a few factors. Even though current developments are rapid, it is worthwhile to summarize what can currently be achieved employing proton detection in biological solids. We illustrate this by analysing the signal-to-noise ratio (SNR) for spectra obtained for a microcrystalline α-spectrin SH3 domain protein sample by (i) employing different degrees of chemical dilution to replace protons by incorporating deuterons in different sites, by (ii) variation of the magic angle spinning (MAS) frequencies between 20 and 110 kHz, and by (iii) variation of the static magnetic field B0. The experimental SNR values are validated with numerical simulations employing up to 9 proton spins. Although in reality a protein would contain far more than 9 protons, in a deuterated environment this is a sufficient number to achieve satisfactory simulations consistent with the experimental data. The key results of this analysis are (i) with current hardware, deuteration is still necessary to record spectra of optimum quality; (ii) 13CH3 isotopomers for methyl groups yield the best SNR when MAS frequencies above 100 kHz are available; and (iii) sensitivity increases with a factor beyond B0 3/2 with the static magnetic field due to a transition of proton-proton dipolar interactions from a strong to a weak coupling limit.


Asunto(s)
Terapia de Protones , Protones , Deuterio/química , Espectrina/química , Dominios Homologos src
4.
J Struct Biol X ; 6: 100069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924280

RESUMEN

AA amyloidosis is one of the most prevalent forms of systemic amyloidosis and affects both humans and other vertebrates. In this study, we compare MAS solid-state NMR data with a recent cryo-EM study of fibrils involving full-length murine SAA1.1. We address the question whether the specific requirements for the reconstitution of an amyloid fibril structure by cryo-EM can potentially yield a bias towards a particular fibril polymorph. We employ fibril seeds extracted from in to vivo material to imprint the fibril structure onto the biochemically produced protein. Sequential assignments yield the secondary structure elements in the fibril state. Long-range DARR and PAR experiments confirm largely the topology observed in the ex-vivo cryo-EM study. We find that the ß-sheets identified in the NMR experiments are similar to the ß-sheets found in the cryo-EM study, with the exception of amino acids 33-42. These residues cannot be assigned by solid-state NMR, while they adopt a stable ß-sheet in the cryo-EM structure. We suggest that the differences between MAS solid-state NMR and cryo-EM data are a consequence of a second conformer involving residues 33-42. Moreover, we were able to characterize the dynamic C-terminal tail of SAA in the fibril state. The C-terminus is flexible, remains detached from the fibrils, and does not affect the SAA fibril structure as confirmed further by molecular dynamics simulations. As the C-terminus can potentially interact with other cellular components, binding to cellular targets can affect its accessibility for protease digestion.

5.
Biochim Biophys Acta Biomembr ; 1864(10): 183996, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35753394

RESUMEN

The treatment of invasive drug-resistant and potentially life-threatening fungal infections is limited to few therapeutic options that are usually associated with severe side effects. The development of new effective antimycotics with a more tolerable side effect profile is therefore of utmost clinical importance. Here, we used a combination of complementary in vitro assays and structural analytical methods to analyze the interaction of the de novo antimicrobial peptide VG16KRKP with the sterol moieties of biological cell membranes. We demonstrate that VG16KRKP disturbs the structural integrity of fungal membranes both invitro and in model membrane system containing ergosterol along with phosphatidylethanolamine lipid and exhibits broad-spectrum antifungal activity. As revealed by systematic structure-function analysis of mutated VG16KRKP analogs, a specific pattern of basic and hydrophobic amino acid side chains in the primary peptide sequence determines the selectivity of VG16KRKP for fungal specific membranes.


Asunto(s)
Antifúngicos , Ergosterol , Antifúngicos/química , Antifúngicos/farmacología , Membrana Celular/metabolismo , Ergosterol/química , Péptidos/química , Péptidos/farmacología , Esteroles/metabolismo
6.
Biomol NMR Assign ; 15(1): 9-16, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32946005

RESUMEN

The aggregation of antibody light chains is linked to systemic light chain (AL) amyloidosis, a disease where amyloid deposits frequently affect the heart and the kidney. We here investigate fibrils from the λ-III FOR005 light chain (LC), which is derived from an AL-patient with severe cardiac involvement. In FOR005, five residues are mutated with respect to its closest germline gene segment IGLV3-19 and IGLJ3. All mutations are located close to the complementarity determining regions (CDRs). The sequence segments responsible for the fibril formation are not yet known. We use fibrils extracted from the heart of this particular amyloidosis patient as seeds to prepare fibrils for solid-state NMR. We show that the seeds induce the formation of a specific fibril structure from the biochemically produced protein. We have assigned the fibril core region of the FOR005-derived fibrils and characterized the secondary structure propensity of the observed amino acids. As the primary structure of the aggregated patient protein is different for every AL patient, it is important to study, analyze and report a greater number of light chain sequences associated with AL amyloidosis.


Asunto(s)
Amiloide , Resonancia Magnética Nuclear Biomolecular , Secuencia de Aminoácidos , Humanos , Cadenas Ligeras de Inmunoglobulina , Pliegue de Proteína
7.
J Biol Chem ; 295(52): 18474-18484, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33093170

RESUMEN

Systemic antibody light chains (AL) amyloidosis is characterized by deposition of amyloid fibrils derived from a particular antibody light chain. Cardiac involvement is a major risk factor for mortality. Using MAS solid-state NMR, we studied the fibril structure of a recombinant light chain fragment corresponding to the fibril protein from patient FOR005, together with fibrils formed by protein sequence variants that are derived from the closest germline (GL) sequence. Both analyzed fibril structures were seeded with ex-vivo amyloid fibrils purified from the explanted heart of this patient. We find that residues 11-42 and 69-102 adopt ß-sheet conformation in patient protein fibrils. We identify arginine-49 as a key residue that forms a salt bridge to aspartate-25 in the patient protein fibril structure. In the germline sequence, this residue is replaced by a glycine. Fibrils from the GL protein and from the patient protein harboring the single point mutation R49G can be both heterologously seeded using patient ex-vivo fibrils. Seeded R49G fibrils show an increased heterogeneity in the C-terminal residues 80-102, which is reflected by the disappearance of all resonances of these residues. By contrast, residues 11-42 and 69-77, which are visible in the MAS solid-state NMR spectra, show 13Cα chemical shifts that are highly like patient fibrils. The mutation R49G thus induces a conformational heterogeneity at the C terminus in the fibril state, whereas the overall fibril topology is retained. These findings imply that patient mutations in FOR005 can stabilize the fibril structure.


Asunto(s)
Amiloide/química , Cadenas Ligeras de Inmunoglobulina/genética , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/patología , Mutación , Secuencia de Aminoácidos , Amiloide/metabolismo , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica en Lámina beta , Homología de Secuencia
8.
Chembiochem ; 21(17): 2495-2502, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32291951

RESUMEN

Positron emission tomography (PET) tracer molecules like thioflavin T specifically recognize amyloid deposition in brain tissue by selective binding to hydrophobic or aromatic surface grooves on the ß-sheet surface along the fibril axis. The molecular basis of this interaction is, however, not well understood. We have employed magic angle spinning (MAS) solid-state NMR spectroscopy to characterize Aß-PET tracer complexes at atomic resolution. We established a titration protocol by using bovine serum albumin as a carrier to transfer hydrophobic small molecules to Aß(1-40) fibrillar aggregates. The same Aß(1-40) amyloid fibril sample was employed in subsequent titrations to minimize systematic errors that potentially arise from sample preparation. In the experiments, the small molecules 13 C-methylated Pittsburgh compound B (PiB) as well as a novel Aß tracer based on a diarylbithiazole (DABTA) scaffold were employed. Classical 13 C-detected as well as proton-detected spectra of protonated and perdeuterated samples with back-substituted protons, respectively, were acquired and analyzed. After titration of the tracers, chemical-shift perturbations were observed in the loop region involving residues Gly25-Lys28 and Ile32-Gly33, thus suggesting that the PET tracer molecules interact with the loop region connecting ß-sheets ß1 and ß2 in Aß fibrils. We found that titration of the PiB derivatives suppressed fibril polymorphism and stabilized the amyloid fibril structure.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Amiloide/química , Compuestos de Anilina/química , Colorantes Fluorescentes/química , Resonancia Magnética Nuclear Biomolecular , Tomografía de Emisión de Positrones , Tiazoles/química , Amiloide/metabolismo , Sitios de Unión , Isótopos de Carbono , Estructura Molecular
9.
Angew Chem Int Ed Engl ; 59(14): 5771-5781, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31863711

RESUMEN

Designed peptides derived from the islet amyloid polypeptide (IAPP) cross-amyloid interaction surface with Aß (termed interaction surface mimics or ISMs) have been shown to be highly potent inhibitors of Aß amyloid self-assembly. However, the molecular mechanism of their function is not well understood. Using solution-state and solid-state NMR spectroscopy in combination with ensemble-averaged dynamics simulations and other biophysical methods including TEM, fluorescence spectroscopy and microscopy, and DLS, we characterize ISM structural preferences and interactions. We find that the ISM peptide R3-GI is highly dynamic, can adopt a ß-like structure, and oligomerizes into colloid-like assemblies in a process that is reminiscent of liquid-liquid phase separation (LLPS). Our results suggest that such assemblies yield multivalent surfaces for interactions with Aß40. Sequestration of substrates into these colloid-like structures provides a mechanistic basis for ISM function and the design of novel potent anti-amyloid molecules.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Polipéptido Amiloide de los Islotes Pancreáticos/química , Fragmentos de Péptidos/antagonistas & inhibidores , Péptidos/química , Secuencia de Aminoácidos , Péptidos beta-Amiloides/metabolismo , Microscopía Fluorescente , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/metabolismo , Péptidos/metabolismo , Especificidad por Sustrato
10.
J Biomol NMR ; 73(10-11): 625-631, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31515660

RESUMEN

Sensitivity and resolution together determine the quality of NMR spectra in biological solids. For high-resolution structure determination with solid-state NMR, proton-detection emerged as an attractive strategy in the last few years. Recent progress in probe technology has extended the range of available MAS frequencies up to above 100 kHz, enabling the detection of resolved resonances from sidechain protons, which are important reporters of structure. Here we characterise the interplay between MAS frequency in the newly available range of 70-110 kHz and proton content on the spectral quality obtainable on a 1 GHz spectrometer for methyl resonances. Variable degrees of proton densities are tested on microcrystalline samples of the α-spectrin SH3 domain with selectively protonated methyl isotopomers (CH3, CH2D, CHD2) in a perdeuterated matrix. The experimental results are supported by simulations that allow the prediction of the sensitivity outside this experimental frequency window. Our results facilitate the selection of the appropriate labelling scheme at a given MAS rotation frequency.


Asunto(s)
Metilación , Resonancia Magnética Nuclear Biomolecular/métodos , Protones , Deuterio/química , Sensibilidad y Especificidad , Espectrina/química , Dominios Homologos src
11.
J Biomol NMR ; 73(8-9): 471-475, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31407204

RESUMEN

Quantification of dipolar couplings in biological solids is important for the understanding of dynamic processes. Under Magic Angle Spinning (MAS), order parameters are normally obtained by recoupling of anisotropic interactions involving the application of radio frequency pulses. We have recently shown that amide backbone order parameters can be estimated accurately in a spin-echo experiment in case the rotor spinning angle is slightly mis-calibrated. In this work, we apply this method to determine methyl order parameters in a deuterated sample of the SH3 domain of chicken α-spectrin in which the methyl containing side chains valine and leucine are selectively protonated.


Asunto(s)
Anisotropía , Resonancia Magnética Nuclear Biomolecular/métodos , Animales , Pollos , Deuterio , Leucina/química , Proteínas/química , Espectrina/química , Valina/química
12.
Angew Chem Int Ed Engl ; 58(13): 4286-4290, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30694593

RESUMEN

Magic-angle spinning (MAS) is an essential ingredient in a wide variety of solid-state NMR experiments. The standard procedures to adjust the rotor angle are not highly accurate, resulting in a slight misadjustment of the rotor from the magic angle ( θRL=tan-12 ) on the order of a few millidegrees. This small missetting has no significant impact on the overall spectral resolution, but is sufficient to reintroduce anisotropic interactions. Shown here is that site-specific 1 H-15 N dipolar couplings can be accurately measured in a heavily deuterated protein. This method can be applied at arbitrarily high MAS frequencies, since neither rotor synchronization nor particularly high radiofrequency field strengths are required. The off-MAS method allows the quantification of order parameters for very dynamic residues, which often escape an analysis using existing methods.


Asunto(s)
Isótopos de Carbono/análisis , Deuterio/química , Espectroscopía de Resonancia Magnética/métodos , Isótopos de Nitrógeno/análisis , Resonancia Magnética Nuclear Biomolecular/métodos , Espectrina/química , Dominios Homologos src , Animales , Anisotropía , Pollos
13.
Angew Chem Int Ed Engl ; 57(44): 14514-14518, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29989288

RESUMEN

Dipolar recoupling in solid-state NMR is an essential method for establishing correlations between nuclei that are close in space. In applications on protein samples, the traditional experiments like ramped and adiabatic DCP suffer from the fact that dipolar recoupling occurs only within a limited volume of the sample. This selection is dictated by the radiofrequency (rf) field inhomogeneity profile of the excitation solenoidal coil. We employ optimal control strategies to design dipolar recoupling sequences with substantially larger responsive volume and increased sensitivity. We show that it is essential to compensate for additional temporal modulations induced by sample rotation in a spatially inhomogeneous rf field. Such modulations interfere with the pulse sequence and decrease its performance. Using large-scale optimizations we developed pulse schemes for magnetization transfer from amide nitrogen to carbonyl (NCO) as well as aliphatic carbons (NCA). Our experiments yield a signal intensity increased by a factor of 1.5 and 2.0 for NCA and NCO transfers, respectively, compared to conventional ramped DCP sequences. Consistent results were obtained using several biological samples and NMR instruments.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Simulación por Computador
14.
Elife ; 62017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29148426

RESUMEN

Membrane-assisted amyloid formation is implicated in human diseases, and many of the aggregating species accelerate amyloid formation and induce cell death. While structures of membrane-associated intermediates would provide tremendous insights into the pathology and aid in the design of compounds to potentially treat the diseases, it has not been feasible to overcome the challenges posed by the cell membrane. Here, we use NMR experimental constraints to solve the structure of a type-2 diabetes related human islet amyloid polypeptide intermediate stabilized in nanodiscs. ROSETTA and MD simulations resulted in a unique ß-strand structure distinct from the conventional amyloid ß-hairpin and revealed that the nucleating NFGAIL region remains flexible and accessible within this isolated intermediate, suggesting a mechanism by which membrane-associated aggregation may be propagated. The ability of nanodiscs to trap amyloid intermediates as demonstrated could become one of the most powerful approaches to dissect the complicated misfolding pathways of protein aggregation.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Agregado de Proteínas , Multimerización de Proteína , Humanos , Espectroscopía de Resonancia Magnética , Membranas/química , Pliegue de Proteína
15.
Sci Rep ; 7(1): 7444, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28785098

RESUMEN

MAS solid-state NMR is capable of determining structures of protonated solid proteins using proton-detected experiments. These experiments are performed at MAS rotation frequency of around 110 kHz, employing 0.5 mg of material. Here, we compare 1H, 13C correlation spectra obtained from protonated and deuterated microcrystalline proteins at MAS rotation frequency of 111 kHz, and show that the spectral quality obtained from deuterated samples is superior to those acquired using protonated samples in terms of resolution and sensitivity. In comparison to protonated samples, spectra obtained from deuterated samples yield a gain in resolution on the order of 3 and 2 in the proton and carbon dimensions, respectively. Additionally, the spectrum from the deuterated sample yields approximately 2-3 times more sensitivity compared to the spectrum of a protonated sample. This gain could be further increased by a factor of 2 by making use of stereospecific precursors for biosynthesis. Although the overall resolution and sensitivity of 1H, 13C correlation spectra obtained using protonated solid samples with rotation frequencies on the order of 110 kHz is high, the spectral quality is still poor when compared to the deuterated samples. We believe that experiments involving large protein complexes in which sensitivity is limiting will benefit from the application of deuteration schemes.


Asunto(s)
Isótopos de Carbono/química , Deuterio/química , Proteínas/química , Hidrogenación , Resonancia Magnética Nuclear Biomolecular
16.
PLoS One ; 12(7): e0181799, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28746363

RESUMEN

Little structural information is available so far on amyloid fibrils consisting of immunoglobulin light chains. It is not understood which features of the primary sequence of the protein result in fibril formation. We report here MAS solid-state NMR studies to identify the structured core of κ-type variable domain light chain fibrils. The core contains residues of the CDR2 and the ß-strands D, E, F and G of the native immunoglobulin fold. The assigned core region of the fibril is distinct in comparison to the core identified in a previous solid-state NMR study on AL-09 by Piehl at. al, suggesting that VL fibrils can adopt different topologies. In addition, we investigated a soluble oligomeric intermediate state, previously termed the alternatively folded state (AFS), using NMR and FTIR spectroscopy. The NMR oligomer spectra display a high degree of similarity when compared to the fibril spectra, indicating a high structural similarity of the two aggregation states. Based on comparison to the native state NMR chemical shifts, we suggest that fibril formation via domain-swapping seems unlikely. Moreover, we used our results to test the quality of different amyloid prediction algorithms.


Asunto(s)
Amiloide/química , Cadenas Ligeras de Inmunoglobulina/química , Multimerización de Proteína , Precursores de Proteínas/química , Amiloide/metabolismo , Amiloide/ultraestructura , Humanos , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/metabolismo , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Modelos Moleculares , Mutación , Conformación Proteica , Precursores de Proteínas/metabolismo , Precursores de Proteínas/ultraestructura , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier
17.
Sci Rep ; 7: 44041, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28287098

RESUMEN

Type II diabetes (T2D) is characterized by diminished insulin production and resistance of cells to insulin. Among others, endoplasmic reticulum (ER) stress is a principal factor contributing to T2D and induces a shift towards a more reducing cellular environment. At the same time, peripheral insulin resistance triggers the over-production of regulatory hormones such as insulin and human islet amyloid polypeptide (hIAPP). We show that the differential aggregation of reduced and oxidized hIAPP assists to maintain the redox equilibrium by restoring redox equivalents. Aggregation thus induces redox balancing which can assist initially to counteract ER stress. Failure of the protein degradation machinery might finally result in ß-cell disruption and cell death. We further present a structural characterization of hIAPP in solution, demonstrating that the N-terminus of the oxidized peptide has a high propensity to form an α-helical structure which is lacking in the reduced state of hIAPP. In healthy cells, this residual structure prevents the conversion into amyloidogenic aggregates.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Animales , Diabetes Mellitus Tipo 2/patología , Estrés del Retículo Endoplásmico , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Transgénicos , Oxidación-Reducción , Agregación Patológica de Proteínas , Conformación Proteica
18.
Solid State Nucl Magn Reson ; 76-77: 7-14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27017576

RESUMEN

In recent years, MAS solid-state NMR has emerged as a technique for the investigation of soluble protein complexes. It was found that high molecular weight complexes do not need to be crystallized in order to obtain an immobilized sample for solid-state NMR investigations. Sedimentation induced by sample rotation impairs rotational diffusion of proteins and enables efficient dipolar coupling based cross polarization transfers. In addition, viscosity contributes to the immobilization of the molecules in the sample. Natural Deep Eutectic Solvents (NADES) have very high viscosities, and can replace water in living organisms. We observe a considerable amount of cross polarization transfers for NADES solvents, even though their molecular weight is too low to yield significant sedimentation. We discuss how viscosity and sedimentation both affect the quality of the obtained experimental spectra. The FROSTY/sedNMR approach holds the potential to study large protein complexes, which are otherwise not amenable for a structural characterization using NMR. We show that using this method, backbone assignments of the symmetric proteasome activator complex (1.1MDa), and high quality correlation spectra of non-symmetric protein complexes such as the prokaryotic ribosome 50S large subunit binding to trigger factor (1.4MDa) are obtained.


Asunto(s)
Proteínas Inmovilizadas , Animales , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Solventes
19.
Biochemistry ; 55(12): 1839-49, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26900939

RESUMEN

Alzheimer's disease is characterized by deposition of the amyloid ß-peptide (Aß) in brain tissue of affected individuals. In recent years, many potential lead structures have been suggested that can potentially be used for diagnosis and therapy. However, the mode of action of these compounds is so far not understood. Among these small molecules, the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide received a lot of attention. In this manuscript, we characterize the interaction between the monomeric Aß peptide and the NSAID sulindac sulfide. We find that sulindac sulfide efficiently depletes the pool of toxic oligomers by enhancing the rate of fibril formation. In vitro, sulindac sulfide forms colloidal particles which catalyze the formation of fibrils. Aggregation is immediate, presumably by perturbing the supersaturated Aß solution. We find that sulindac sulfide induced Aß aggregates are structurally homogeneous. The C-terminal part of the peptide adopts a ß-sheet structure, whereas the N-terminus is disordered. The salt bridge between D23 and K28 is present, similar as in wild type fibril structures. (13)C-(19)F transferred echo double resonance experiments suggest that sulindac sulfide colocalizes with the Aß peptide in the aggregate.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas/fisiología , Sulindac/análogos & derivados , Secuencia de Aminoácidos , Péptidos beta-Amiloides/toxicidad , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/toxicidad , Agregado de Proteínas/efectos de los fármacos , Sulindac/farmacología
20.
J Phys Chem Lett ; 6(24): 5040-4, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26641130

RESUMEN

Spin-state-selective excitation (S3E) experiments allow the selection of individual transitions in a coupled two spin system. We show that in the solid state, the dipole-dipole interaction (DD) between (15)N and (1)H in a (1)H-(15)N bond and the chemical shift anisotropy (CSA) of (15)N in an amide moiety mutually cancel each other for a particular multiplet component at high field, when the sample is spun off the magic angle (Arctan [√2] = 54.74°). The accuracy of the adjustment of the spinning angle is crucial in conventional experiments. We demonstrate that for S3E experiments, the requirement to spin the sample exactly at the magic angle is not mandatory. Applications of solid state NMR in narrow bore magnets will be facilitated where the adjustment of the magic angle is often difficult. The method opens new perspectives for the development of schemes to determine distances and to quantify dynamics in the solid state.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...